skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McIlwaine, Nathaniel S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 28, 2025
  2. The present work details experimental phase stabilization studies for the disordered, multi-cation A6B2O17 (A = Zr, Hf; B = Nb, Ta) system. We leverage both high-temperature in situ and ex situ X-ray diffraction to assess phase equilibrium and metastability in A6B2O17 ceramics produced via reactive sintering of stoichiometric as-received powders. We observe that the A6B2O17 phase can be stabilized for any stoichiometric combination of Group 4B and 5B transition metal cations (Zr, Nb, Hf, Ta), including ternary and quinary systems. The observed minimum stabilization temperatures for these phases are generally in agreement with prior calculations for each disordered A6B2O17 ternary permutation, offering further support for the inferred cation-disordered structure and suggesting that chemical disorder in this system is thermodynamically preferable. We also note that the quinary (Zr3Hf3)(NbTa)O17 phase exhibits enhanced solubility of refractory cations which is characteristic of other high-entropy oxides. Furthermore, A6B2O17 phases experience kinetic metastability, with the orthorhombic structure remaining stable following anneals at intermediate temperatures. 
    more » « less
  3. Gallium nitride (GaN) high electron mobility transistors (HEMTs) are key components enabling today’s wireless communication systems. However, overheating concerns hinder today’s commercial GaN HEMTs from reaching their full potential. Therefore, it is necessary to characterize the respective thermally resistive components that comprise the device’s thermal resistance and determine their contributions to the channel temperature rise. In this work, the thermal conductivity of the GaN channel/buffer layer and the effective thermal boundary resistance (TBR) of the GaN/substrate interface of a GaN-on-SiC wafer were measured using a frequency-domain thermoreflectance technique. The results were validated by both experiments and modeling of a transmission line measurement (TLM) structure fabricated on the GaN-on-SiC wafer. The limiting GaN/substrate thermal boundary conductance (TBC) beyond which there is no influence on the device temperature rise was then quantified for different device configurations. It was determined that this limiting TBC is a function of the substrate material, the direction in which heat primarily flows, and the channel temperature. The outcomes of this work provide device engineers with guidance in the design of epitaxial GaN wafers that will help minimize the device’s thermal resistance. 
    more » « less